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In this study, the statistical methodology of Design of Experiments (DOE) was applied to better

determine the parameters of an Artificial Neural Network (ANN) in a problem of nonlinear time series

forecasting. Instead of the most common trial and error technique for the ANN’s training, DOE was

found to be a better methodology. The main motivation for this study was to forecast seasonal nonlinear

returns, water consumption, etc. A case study adopting this framework is presented for six time series

representing the electricity load for industrial consumers of a production company in Brazil.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

DOE is considered one of the most important methodologies
for researchers who deal with experiments in practical applica-
tions, with a huge amount of success stories. Nowadays, DOE
resources are incorporated in many statistical software packages
that ease calculation and interpretation of results [8]. Similarly,
ANNs play an important role for problems of time series
forecasting [19]. One often quoted drawback in using ANNs,
however, is the optimization of the ANN’s parameters. In general,
the lengthy trial-and-error process is what most practitioners use
for this optimization [63].

The main motivation for this work is to forecast nonlinear and
seasonal time series—which is a real problem for many applica-
tions—using ANN. Usually daily, monthly, or yearly seasonality is
inherent to several problems related to prices, returns, electricity
load, water consumption, demand, etc. Nonlinear structures are
also present in most cases. DOE is here used to estimate the
parameters of an ANN through simulation.

There is a lack of literature on this specific issue and some
questions are subject to investigation. Among others, the follow-
ing questions will be addressed in this paper: How to approach

problems of nonlinear seasonal time series using ANNs? How to train

ANNs for this kind of problem? How many factors are important to

this approach? Are there interactions that should be considered?
ll rights reserved.

ssi).
This paper describes in Section 2 the recent literature review of
DOE on ANNs for problems of nonlinear time series forecasting.
Section 3 presents numerical and graphical results for the overall
procedure. Section 4 presents a case study for short-term
electricity load problem using the DOE on ANN’s framework.
Section 5 states our main conclusions.
2. Background and literature review

2.1. Design of experiments for simulation

The process of training an ANN consists in changing the input
parameters of a computational algorithm, running the algorithm,
and checking the results. This can be referred as a simulation
study for the ANN problem.

In spite of the amount of success stories related to industrial
applications, DOE is not used as widely in simulation as it should be.
Kleijnen et al. [34] points that the lack of use of DOE for simulation
is due to some reasons: (i) Simulation analysts are not convinced of
the benefits of DOE. (ii) DOE research is often found in specialty
journals seldom read by simulation analysts. (iii) Most DOEs were
originally developed for real-world experimentation rather than
developed specifically for simulation settings. The aforementioned
research also points the main benefits of experimental design on
model development and simulation and predicts that the use of
DOE is likely to become more substantial in this area:

DOE can uncover detailed insight into the model’s behavior,
cause the modeling team to discuss in detail the implications
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Fig. 1. Multilayer feedforward ANN structure.
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of various model assumptions, help frame questions when the
analysts may not know ahead of time what questions should
be asked, challenge or confirm expectations about the direc-
tion and relative importance of factor effects, and even uncover
problems in the program logic y Design suited to a particular
application is much better than trial and error or a simple,
small design. Consequently, practitioners should be open to the
notion that DOE is a useful and necessary part of analysis of
complex simulation.

Translating the simulation terminology it could be said that an
input or a parameter in simulation is referred to as a factor in DOE.
Usually there are many more factors in simulation than in a real-
world experiment. A factor can be either qualitative or quantita-

tive. Each factor can be set to two or more values, called factor

levels, typically coded numerically for analysis purposes. A
scenario or design point is a combination of levels for all factors.
In considering stochastic simulations replicates mean that differ-
ent Pseudo-Random Numbers (PRNs) are used to simulate the
same scenario. The nature of the data collection of scenarios is not
random but sequential. Unless otherwise specified, it is assumed
that replicates use nonoverlapping PRN streams, so outputs across
replicates are Independently Identically Distributed (IID)—as most
statistical methods assume. Developing a basic understanding in
simulation is referred as testing hypotheses about factor effects

in DOE [34].
Another important issue when using DOE for simulation is that

the main goal here is not optimization. In using DOE the efforts
are dedicated to find robust policies or decisions, rather than
optimal policies. It is certainly true that finding the optimal policy
for a simulated system is a hot topic, and many methods have
been proposed. Fu [18] and Spall [50] discuss the current research
and practice of optimization for simulation. These methods
include heuristic search techniques—such as genetic algorithms,
response surface methodology (RSM), simulated annealing, tabu
search—and methods that analyze the simulation model to
estimate gradients—such as perturbation analysis and score
functions. The result of the ‘‘optimization’’ is conditioned on
assumptions of specific (typically assumed independent) distribu-
tions and many input variables. The term ‘‘optimum’’ is proble-
matic when the probability of all these assumptions holding in
practice—even for a limited time—is effectively zero. In contrast,
a robust design approach treats all these assumptions as
additional factors when running the experiment. These are
considered noise factors (rather than decision factors) because
they are unknown or uncontrollable in the real-world environ-
ment. A robust system or policy works well across a range of noise
conditions that might be experienced, so implementing a robust
solution is much less likely to result in unanticipated results. This
robust design philosophy is inspired by Taguchi [65], who uses
simple designs to identify robust product configurations for
Toyota.

2.2. Artificial Neural Networks for problems of time series forecasting

ANNs, first used in the fields of cognitive science and
engineering, are universal and highly flexible function approx-
imators. As cited by Tsay [56], ANNs are general and flexible tools
for forecasting applications:

A popular topic in modern data analysis is ANN, which can be
classified as a semiparametric method. As opposed to the
model-based nonlinear methods, ANNs are data-driven ap-
proaches which can capture nonlinear data structures without
prior assumption about the underlying relationship in a
particular problem.
Fig. 1 shows the ANN structure employed in the present study:
A multilayer feedforward network trained with Backpropagation.
The ANN has three types of layers, namely, the input layer, the
output layer and the hidden layer, which is intermediate between
the input and output layers. The number of hidden layers is
usually 1 or 2. Each layer consists of neurons, and the neurons in
two adjacent layers are fully connected with respective weights,
while the neurons within the same layer are not connected. In this
paper, the output layer has just a single neuron, which represents
the one-step forecasting based on previous points.

Each neuron in the input layer is designated to an attribute in
the data, and produces an output which is equal to the (scaled)
value of the corresponding attribute. For each neuron in the
hidden or output layer, the following input–output transformation
is employed:

v ¼ f
XH

h¼1

whuh þw0

 !
,

where v is the output, H is the total number of neurons in the
previous layer, uh is the output of the hth neuron in the previous
layer, wh is the corresponding connection weight, w0 is the bias
(or intercept). f is the nonlinear transformation function (or
activation function) also used in the output layer. The following
transformation function, as example, is employed very often:

f ðzÞ ¼
2

ð1þ e�zÞ
� 1.

When the ANN is trained using the Backpropagation algorithm
the weights and biases are optimized. The objective function
employed for optimization is the sum of the squares of the
difference between a desirable output (ytarget) and an estimated
output (ybpn).

Review of ANNs from statistical and econometric perspectives
can be found in [11]. Today, ANNs are used in a variety of modeling
and forecasting problems. Although many models commonly used
in real problems are linear, the nature of most real data sets
suggests that nonlinear problems are more appropriate for
forecasting and accurately describing it. ANN plays an important
role for this kind of forecasting.

The literature on ANN is enormous and its applications spread
over many scientific areas with varying degrees of success. In the
M-Competition [39], M2-Competition [40] and M3-Competition
[38] many participants used ANNs. The main reason for this
increased popularity of ANNs is that these models have been
shown to be able to approximate almost any nonlinear function
arbitrarily close. Hence, when applied to a time series which is
characterized by truly nonlinear dynamic relationships, the ANN
will detect these and provide a superior fit compared to linear
models, without the need to construct a specific parametric
nonlinear time series model.
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Addressing the problem of time series forecasting, some
important papers have considered ANNs as a promising metho-
dology and addressed important issues. Franses and van Homelen
[17] explore the ability of ANNs to capture nonlinearity as implied
by SETAR, Markov-Switching and GARCH models. Kaastra and
Boyd [28] provide an introductory guide—an eight-step procedur-
e—in the design of a neural network for forecasting economic
time series data. Bodyanskiy and Popov [66] present a special ANN
approach to forecasting financial time series based on the
presentation of the series as a combination of quasi-periodic
components. Tseng et al. [57] proposes a hybrid forecasting
model, which combines the seasonal time series ARIMA (SARIMA)
and the neural network Backpropagation (BP) models, named
there as SARIMABP. Karunasinghe and Liong [30] investigate the
performance of ANNs as a global model over the widely used local
models (local averaging technique and local polynomials techni-
que) in chaotic time series. In the paper of Aitkenhead et al. [1],
oil, stream water, and climatic variables, were measured hourly
over several month periods in two situations in North-East (NE)
Scotland, using data loggers and other measuring instruments.
The data sets were used to train neural networks using three
different methods, including a novel, biologically plausible
system. BuHamra et al. [7] combine the Box–Jenkins (BJ) and
the ANN approaches to model time series data of water
consumption in Kuwait. Shi et al. [49] investigate nonlinear time
series modeling using the general state-dependent autoregressive
model. Niska et al. [43] model the air quality using ANN, a difficult
task due to both their chaotic and nonlinear phenomenon and
high dimensional sample space. Zhang [61] presents a hybrid
methodology that combines both ARIMA model and ANNs to take
advantage of the unique strength of ARIMA model and ANNs in
linear and nonlinear modeling. Kim [32] uses support vector
machines (SVMs) for the prediction of financial time series. This
study applies SVM to predicting the stock price index. Ho et al.
[23] show a comparative study of ANN and ARIMA modeling in
time series prediction. BP and Recurrent ANN gives satisfactory
performance compared to ARIMA. Kohzadi et al. [35] compare
ARIMA and ANN price forecasting performance. Terasvirta et al.
[54] examine the forecast accuracy of linear autoregressive,
smooth transition autoregressive (STAR), and ANNs for 47
monthly macroeconomic variables of the G7 economies. Ghiassi
et al. [19] present a dynamic neural network model for forecasting
time series events that uses a different architecture than
traditional models. Balkin and Ord [3] explain a method, called
Automated ANNs, that is an attempt to develop an automatic
procedure for selecting the architecture of an Artificial Neural
Network for forecasting purposes. Cubiles-de-la-Vega et al. [67]
propose a procedure for designing a multilayer perceptron for
predicting time series. It is based on the generation, according to a
set of rules emerging from an ARIMA model previously fitted, of a
set of nonlinear forecasting models. Kalaitzakis et al. [29] present
the development and application of advanced neural networks to
face successfully the problem of the short-term electric load
forecasting, using actual hourly load data from the power system
of the island of Crete, in Greece. Qi and Zhang [46] expose
problems of the commonly used information-based in-sample
model selection criteria in selecting ANNs for financial time series
forecasting. Zhang and Qi [62] investigate the problem of
seasonality and show that limited empirical studies on seasonal
time series forecasting with neural networks yield mixed results.
In Chiang et al. [12], it was reported that the ANN proved to be
superior to regression models when the data availability is
limited, e.g., newly launched mutual funds which have limited
historical data.

This research is partially motivated by the results presented in
the following papers. Zhang [60], examining the capability of ANN
for linear time series using both simulated and real data, states
that ANN is quite competent in modeling and forecasting linear
time series in a variety of situations and simple neural structures
are often effective. Hwarng and Ang [27] and Hwarng [26] mainly
motivated by linear time series forecasting addresses some ideas
that are relevant for the present work: (i) ‘‘Backpropagation
Neural Networks (BPNNs) generally performed well and consis-
tently for time series corresponding to ARMA(p, q) structures,
mainly when a particular noise level was considered during the
network training’’. (ii) ‘‘Given the well notion that multilayer
feedforward NN may act as a universal approximators, it is
reasonable to expect that BPNNs can perform at least comparably
on linear data. If so, one may find it convenient to apply BPNNs
regardless of the nature of data especially when the functional
form of data is unknown’’. Zhang et al. [63] present a compre-
hensible state of the art survey of ANN applications in time series
forecasting for the past decade and the following points are here
considered: (i) ‘‘Overall, ANNs give satisfactory performance in
forecasting’’. (ii) ‘‘There are many factors that can affect the
performance of ANNs. However, there are no systematic investi-
gations of these issues. The shot-gun (trial and error) methodol-
ogy for specific problems is typically adopted by most researchers,
which is the primary reason for inconsistencies in the literature’’.
(iii) ‘‘A considerable amount of research has been done in this area
given the fast-growing nature of the literature’’.

2.3. Nonlinear time series

Linear time series methods have been used widely for the past
two decades. Recently, however, there has been increasing interest
in extending the classical framework of Box and Jenkins [5] to
incorporate nonstandard properties, such as nonlinearity, non-
Gaussianity, and heterogeneity. In this way, a great number of
nonlinear models have been developed, such as the bilinear model
of Granger and Anderson [20], the threshold autoregressive (TAR)
model of Tong [55], the state-dependent model of Priestley [45],
the Markov switching model of Hamilton [22], the functional-
coefficient autoregressive model of Chen and Tsay [10], among
many others. Although the properties of these models tend to
overlap somewhat, each is able to capture a wide variety of
nonlinear behavior. In most time series, however, this kind of
modeling is even more complex due to some features like high
frequency, daily and weekly seasonality, calendar effect on
weekend and holidays, high volatility and presence of outliers.
In particular, it has been shown that the ANN model is able to
approximate any well-behaved nonlinear relationship to an
arbitrary degree of accuracy, in much the same way that an
ARMA model provides a good approximation of general linear
relationships [9,24]. This is the so-called universal approximation

property of ANNs. In short, feedforward ANN with a hidden layer
can be seen as a way to parameterize a general continuous
nonlinear function.

The problem one immediately faces when considering the use
of nonlinear time series models is the vast, if not unlimited,
number of possible models. Consider a univariate time series xt

which for simplicity is observed at equally spaced time points. We
denote the observations by {xt|t ¼ 1,y,T}, where T is the sample
size. A purely stochastic time series xt is said to be linear if it can
be written as

xt ¼ mþ
X1
i¼0

ciat�i,

where m is a constant, ci are real numbers with c0 ¼ 1, and {at} is a
sequence of independent and identically distributed (IID) random
variables with a well-defined distribution function. We assume



ARTICLE IN PRESS

P.P. Balestrassi et al. / Neurocomputing 72 (2009) 1160–1178 1163
that the distribution of at is continuous and E(at) ¼ 0. In many
cases, we further assume that VarðatÞ ¼ s2

a or, even stronger, that
at is Gaussian. If s2

a

P1
i¼1c

2
i o1 then xt is weakly stationary (i.e.,

the first two moments of xt are time-invariant). The ARMA process
is linear because it has an MA representation in the mentioned
equation. Any stochastic process that does not satisfy the
condition of this equation is said to be nonlinear. See [56] for
more details. For previous and more general surveys on nonlinear
time series models, the interested reader is referred to [55,21].

A natural approach to modeling time series with nonlinear
models seems to define different states of the world or regimes, and
to allow for the possibility that the dynamic behavior of variables
depends on the regime that occurs at any given point in time [45].
By state-dependent dynamic behavior of a time series it is meant
that certain properties of the time series, such as its mean,
variance and/or autocorrelation, are different in different regimes.
In particular, autocorrelations tend to be larger during periods of
low volatility and smaller during periods of high volatility. The
periods of low and high volatility can be interpreted as different
regimes. Of course, the level of volatility in the future is not
known with certainty. The best one can do is to make a sensible
forecast of this level and, hence, of the regime that will occur in
the future [36]. The state-dependent, or regime-switching con-
siders that the regime is stochastic and not deterministic, witch is
relevant for many time series. There are two main classes of
regime-switching models: (i) Regimes determined by observable
variables that include the Bilinear model, the TAR (Threshold
Autoregressive) model and the SETAR (Self-Exciting Threshold
Autoregressive) model and (ii) Regimes determined by unobser-
vable variables that include the MSW (Markov-Switching) model.
We restrict our attention to models that assume that in each of
the regimes the dynamical behavior of the time series is modeled
with an AR model. In other words, the time series is modeled with
an AR model, where the autoregressive parameters are allowed to
depend on the regime or state. Generalizations of the MA model to
a regime-switching context have also been considered [13], but
we abstain from discussing these models here.

Table 1 shows a collection of nonlinear time series implemen-
ted and simulated for the present study. In each case, et:N(0,1) is
assumed to be IID. These eight time series models are chosen to
represent a variety of problems that have different time series
characteristics. For example, some of the series have pure
autoregressive (AR) or pure moving average (MA) correlation
structures while others have mixed AR and MA components.
Similar models (with different lags) were explored by Zhang [60].

A typical graph of the mentioned models is shown in Fig. 2
where a STAR model with an autoregressive component and a lag
24 seasonality (typically for hourly seasonality) is enforced.
Table 1
A collection of nonlinear time series models

Model Equation

Sign autoregressive

(SAR)

yt ¼ sign(yt�12)+et, where sign(x) ¼ 1, 0, �1 if x40,

x ¼ 0, xo0, respectively

Bilinear (BL1) yt ¼ 0.8yt�1et�1+et

Bilinear (BL2) yt ¼ 0.3yt�1�0.4yt�24+0.6yt�1et�1+et

Threshold

autoregressive (TAR)

yt ¼ 0.7yt�1+et for |yt�1|p1 ¼ �0.4yt�1�et for |yt�1|41

Nonlinear

autoregressive (NAR)

yt ¼ 0.6yt�1/(|yt�24|+3)+et

Nonlinear moving

average (NMA)
yt ¼ �t � 0:5�t�24 þ 0:1�t�2 þ 0:3�t�1�t�2 � 0:3�2t�2

Smooth transition

autoregressive (STAR1)

yt ¼ 0.7yt�1+0.7yt�24+[1+exp(�10yt�1)]�1+et

Smooth transition

autoregressive (STAR2)
2.4. DOE on ANN’s training for nonlinear time series forecasting

While the nonlinear models in Table 1 can be useful for a
particular problem and data, they do not have a general appeal for
other applications. The pre-specification of the model form
restricts the usefulness of these parametric nonlinear models
since there are too many possible nonlinear patterns. In fact, the
formulation of an appropriate nonlinear model to a particular data
set is a very difficult task compared to linear model building
because ‘‘there are more possibilities, many more parameters and
thus more mistakes can be made’’ [38]. Furthermore, one
particular nonlinear specification may not be general enough to
capture all nonlinearities in the data. As Diebold and Nason [14]
pointed out, ‘‘the overwhelming variety of plausible candidate
nonlinear models makes determination of a good approximation
to the true data-generating process a difficult task and the
seemingly large variety of parametric nonlinear models is in fact a
very small subset of the class of plausible nonlinear data-
generating process’’.

As described in Section 2.2, ANNs are natural candidates to
forecast nonlinear time series. However, the large number of
parameters that must be selected to develop a neural network
have meant that the design process involves much trial and error.
Traditional methods of studying one-factor-at-a-time may lead to
unreliable and misleading results, and at times may give wrong
conclusions. This is mainly what trial and error does. Statistically
designed experiments perform more efficiently as they consider
multiple factors simultaneously and can detect important inter-
actions. Using DOE as a process of planning experiments enables
the collection of appropriate data using the minimum number of
experiments while acquiring the necessary technical information.
Insight into the main effects, as well as interaction effects of
factors including noise are useful in decision making to determine
the control factors for further expenditure of resources.

A few papers have studied the use of ANNs, simulated through
design of experiments, in a different context to the proposed in
this paper and exploring different factors and levels. Khaw et al.
[31] describe in this seminal paper an innovative application of
the Taguchi method for the determination of the design
parameters that include both the micro-structural and macro-
structural aspects of a neural network. The feasibility of using this
approach was demonstrated by optimizing the design parameters
of a back-propagation neural network for determining operational
policies for a manufacturing system. Results drawn from this
research showed that the Taguchi method provides an effective
means to enhance the performance of the neural network in terms
of the speed for learning and the accuracy for recall. Kim and Yum
-25

-20

-15

-10

-5

0

5

Fig. 2. A typical seasonal Smooth Transition Autoregressive (STAR2) time series.
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[33] present a similar paper. Sukthomya and Tannock [52,53] use
the same Taguchi experimental design idea to set the parameters
of an ANN in a complex forming process. Lin and Tseng [37] also
use the same Taguchi approach for a ‘‘Learning Vector Quantiza-
tion’’ ANN on an application to bicycle derailleur systems.
Enemuoh and El-Gizawy [16] describe a method for robust design
of an ANN for prediction of delamination, damage width, and hole
surface roughness during drilling in carbon fiber reinforced epoxy.
The effects of number of neurons, hidden layers, activation
function, and learning algorithm on the mean square error of
model prediction are quantified. Using the aforementioned
method, a robust ANN was developed that predicted process-
induced damage with high accuracy. Zhang [60] and Zhang et al.
[64] present an experimental evaluation of neural networks for
linear and nonlinear time series forecasting. Three main ANN
parameters are examined through a simulated computer experi-
ment: input nodes, hidden nodes and sample size. The models
used in these papers were similarly reproduced in the present
work (see Table 2) for comparative purposes.

When compared with the previous papers, the present study
could be mainly innovative in the following points:
�
 Instead of using the Taguchi approach of DOE, a mixed
approach is examined;

�
 The number of ANN parameters is increased;

�
 The seasonality is included to mimic real nonlinear problems;

�
 Interactions among ANN parameters are permitted and

evaluated.

3. Experimental design

In this section, the experimental design for the ANN’s training
is examined. First, some guidelines for industrial experiments will
be addressed and some changes are recommended for the ANN’s
training context. The deployment and the results of the guideline
are presented next.

3.1. Some guidelines

Coleman and Montgomery [68] present some guidelines for
designing an experiment that in spite of been focused on
industrial experiments can also be used for computer simulation:
(a)
 Recognition of and statement of the problem

(b)
 Choice of factors, levels, and ranges

(c)
 Selection of the response variable

(d)
 Choice of experimental design

(e)
 Performing the experiment

(f)
 Statistical analysis of the data

(g)
 Conclusions and recommendations
These guidelines are usually interactive and the structure is not
rigid when applied in real experiments. Some steps are often done
simultaneously or also in reverse order. Steps a, b and c are called
pre-experimental planning. Some comments related to ANN’s
training are followed.

3.1.1. Recognition of and statement of the problem

This may seem an obvious point but in industrial experiment-
s—and also in computer simulation—it is not simple to get the
whole picture of a problem and usually a team approach is
required. For this application, involving many different areas and
expertise, where opinions are many times conflicting, a team
approach is appropriated. Also, a clear statement of the problem

contributes substantially for the problem solution. Recognition of
the problem and its correct statement usually give focus to reach
an objective.

3.1.2. Choice of factors, levels and ranges

In real-world experiments, only a small number of factors are
typically varied. Indeed, it is impractical or impossible to attempt
to control more than, say, 10 factors; many published experiments
deal with fewer than 5. In contrast, a multitude of potential
factors exists for simulation models used in practice.

Good programming avoids fixing the factors at specific
numerical values within the code; instead, the code reads factor
values so the program can be run for many combinations of
values. Of course, the code should check whether these values are
admissible; that is, do these combinations fall within the
experimental domain? Such a practice can automatically provide a

list of potential factors. Next, users should confirm whether they
indeed wish to experiment with all these factors or whether they
wish to fix some factors at nominal (or base) levels a priori. This
type of coding helps unfreeze the mindset of users who would
otherwise be inclined to focus on only a few factors.

In real-world experiments, the basic mindset is often that data
should be taken simultaneously unless the design is specifically
identified as a sequential design. When samples must be taken
sequentially, the experiment is viewed as prone to validity
problems. Analysts must therefore randomize the order of
sampling to guard against time-related changes in the experi-
mental environment (such as temperature, humidity, consumer
confidence, and learning effects) and perform appropriate
statistical tests to determine whether the results have been
contaminated. Most simulation experiments are implemented
sequentially even if they are not formally analyzed that way. If a
small number of design points are explored, this implementation
may involve the analysts manually changing factor levels [34].

The increase in computer speeds has caused some analysts to
add more details to their simulation models. Different analysts
might use different set of factors and levels.

3.1.3. Selection of the response variable

For industrial experiments the choice of a useful and practical
response variable such as yield, load, cost, etc., involves a gage
capability study and the error is in many cases evaluated by
repeatability and reproducibility study. For computer simulation,
whereas the initial condition can be blocked (usually setting the
base of a random number) the response is usually an estimated
variable that can be repeated without error by establishing the
same initial conditions. The experimental choice is also, in a
certain extent, much more complex than it is in a computer
simulation and need to be evaluated a priori. Average, standard
deviation, etc., are often used as response variable. Multiple
responses are also usual in industrial designed experiments and
the simultaneous optimization of several response variables
involves desirability functions (Derringer and Suich [69]).

3.1.4. Choice of experimental design

The term design denotes a matrix where the columns represent
the input factors and each row represents a combination of factor
levels. Choice of design involves sample size, the run order of the
experiment (that for computer simulation is usually irrelevant),
and several restrictions to compose the final matrix generated as a
worksheet output.

Some statistical software packages like Minitab, Statistica,
SPSS, JMP, Matlab, among many others, are good programs that
offers a library of classical designs. These designs are usually
generated with coded levels and are chosen based on number of
factors and levels, alias structure and resolution, amount of time
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Table 2
Screening factors for the ANN’s training on nonlinear time series forecasting

Factor Symbol Levels Number of

levels

ANN architecture – MLP, RBF, GRNN, ARTMAP, y 1

Number of hidden layers HL 0 (rarely), 1, 2 or 3 (rarely) 2

Number of units per layer UL k� (N+1), where N is the number of input and k ¼ 1, 1.5, 2 3

Regression output function OF Linear, Logistic-range 2

Problem type/input mode PT Univariate time series/Regression 2

Predict X steps ahead – 1,2, 3, y 1

Steps used to predict SP 12, 24 2

Phase 1 training algorithm P1 Backpropagation, Quick propagation, Delta-bar-delta 3

Phase 2 training algorithm P2 Conjugate gradient descent, Quasi-Newton, Levenberg–Marquardt 3

Epochs Ep 100, 400 2

Learning rate LR 0.1, 0.9 2

Initialization method IM Unif(0,1), N(0,1) 2

Stopping conditions (Target error) SC 0, 0.1 2

Minimum improvement in error for

training/selection

ET 0, �0.1 2

Minimum improvement in error for

number of epochs

EE 1, 25, 50 3

Prune units PU No, with small fan-out weights (pruning threshold ¼ 0.05) 2

Prune input variables PI No, with small fan-out weights (pruning threshold ¼ 0.05), with low sensitivity after training
(ratio ¼ 1)

3

Weight decay regularization—Phase 1 W1 No, Decay factor ¼ 0.0001, Decay factor ¼ 0.001, Decay factor ¼ 0.01 3

Weigend weight decay

regularization—Phase 2

W2 No, Decay factor ¼ 0.0001, Decay factor ¼ 0.001, Decay factor ¼ 0.01 3

Backpropagation tuning (conditional to

Phase 1 training algorithm)

BP 4 runs for a L4 Taguchi design with factors (A—Adjust learning rate and momentum each epoch,
B—Shuffle presentation order of cases each epoch and C—Add Gaussian noise)

4

Quick propagation tuning (conditional to

Phase 1 training algorithm)

QP 4 runs for a L4 Taguchi design with 3 factors (A—Learning rate B—acceleration and C—Add Gaussian
noise)

4

Delta-bar-delta tuning (conditional to

Phase 1 training algorithm)

DD 4 runs for a L4 Taguchi design with 2 factors (A—learning rate and B—Add Gaussian noise) 4

Sample size SS k�24, where k ¼ 7, 14, 21 3

Sampling method SM Random, Bootstrapping, Cross-validated 2

Levels in bold were chosen for the experimental design.
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and resources to run the experiments, etc. One interesting new
program, the WebDOE, helps users to design their experiment
through an easy-to-use Web interface (Crary Group [70]).

Kleijnen et al. [34], using DOE for simulation, recommends a
scheme based on the system complexity assumptions and states
that it is better initially to focus on a large number of factors
(respecting limitations of time, cost, etc.). In this way, analysts can
look broadly across the factors in the simulation study. Sometimes
intuition is wrong and needs to be challenged. With this approach,
starting from minimal assumptions for an initial experiment, the
analyst becomes open-minded for new assumptions and admits
that little is known about the nature of the response. The analyst
tends to reduce the initial data-collection effort making simplify-
ing assumptions. This is chosen mainly when limitations are
imposed. If runs are extremely time-consuming then analysts can
reduce the computational effort by making assumptions about the
nature of system. The best idea is to moving from minimal
assumptions and to focus on the short list of factors selected after
the initial experiment while holding the remaining factors to only
a few configurations. Even after careful thought and planning, it is
rare that the results from a single design are so comprehensive
that the simulation model needs never be revisited. In practice,
results from experiments often need to be modified, i.e., expanded
or thrown out to obtain more detailed information on the
simulation performance for a smaller region of the factor
combinations.
3.1.5. Performing the experiment

To run the experiment in computer simulation is usually easier
than in industrial experiments. If the simulation program is open-
source, it is sometimes convenient to run the complete simulation
as a batch process. Unfortunately, this is not what happens very
often due to the programming skill needed and the software
restriction always imposed. Also, this iterative experimentation is
considered a mistake in industrial experiments. A design of a
single large, yet comprehensive, matrix of experiments at the start
of the study is not considered a good practice because the
experimenter is not fully convinced of the levels and factors
involved. Coleman and Montgomery [68] points out that the
experimentation should be sequentially and, as a general rule, no
more than about 25% of the available resources should be invested
in the first experiment.
3.1.6. Statistical analysis of the data

Statistical methods here are not very elaborate if the previous
guidelines are followed. Graphical methods, residual analysis and
model adequacy play an important role in this phase. Statistical
analysis add objectivity to the decision making process.
3.1.7. Conclusions and recommendations

If coupled with process knowledge and common sense, the
statistical analysis can lead to sound conclusions and recommen-
dations. Assuming a sequentially design experiment, follow-up
runs and confirmation testing should also be performed.
3.2. Pre-experimental planning

In this section, the recognition of and statement of the
problem, the selection of the response variable and the choice of
factors, levels, and ranges will be discussed.
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Fig. 3. Spectral density for the STAR2 model.
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Related to the ANN’s training, the following statement of
the problem was considered appropriated, using a teamwork
approach:

When predicting nonlinear time series using ANN, trial and
error is the shotgun and time consuming methodology often
used. The problem here is to establish a well-structured
methodology do estimate the parameters of such ANN.

Several error measures like Root Mean Square Error (RMSE), Mean
Absolute Percentage Error (MAPE), Median Absolute Percentage Error
(MdAPE), etc., have been used as performance measures of time series
forecasting. The interested reader could check Armstrong and Collopy
[71] for a better discussion on this topic. It should be noted that there
is no uniformly accepted forecasting error measure. In this work, the
traditional MAPE will be used as response variable, defined as

MAPE ð%Þ ¼
1

T

XT

t¼1

jyt � ŷtj

yt

� 100,

where yt is the actual observation at time t, ŷt is the predicted value,
and T is the number of predictions.

Several factors have been considered in the literature when
training ANNs. Table 2 presents the screening factors considered
for problems of nonlinear time series forecasting using the
software Statistica (with Neural Network toolbox) [51]. Details
about the factors are described next.
�
 ANN architecture. ANNs are nonlinear modeling algorithms.
Examples of ANN for nonlinear time series are Multilayer
Perceptrons (MLP), Radial Basis Function (RBF), Generalized
Regression Neural Network (GRNN), Support Vector Machine
(SVM), among many others. MLPs are one of the most popular
network types, the only one considered in this work, and in many
problem domains seem to offer the best possible performance.

�
 Number of hidden layers. A hidden layer is a group of neurons

that have a specific function and are processed as a whole.
Theoretical results prescribe that an MLP with one hidden
layer (three layer perceptron) is capable of approximating any
continuous function [25].

�
 Number of units per layer. Hidden nodes are used to capture the

nonlinear structures in a time series. Here, it will be used an
amount between the number of input and its double (k(N+1),
where N is the number of input and k ¼ 1, 1.5, 2).

�
 Regression output function (activation function). All neural

networks take numeric input and produce numeric output.
The transfer function of a unit is typically chosen so that it can
accept input in any range, and produces output in a strictly
limited range (it has a squashing effect) [4].

�
 Problem type/input mode. The way the time series is presented as

input to the ANN is always considered fundamental. Here, two
ways of presenting the time series to the ANN will be tested.
(a) As a problem of univariate time series the lagged informa-

tion for the autoregressive process is preserved. In this
way, the input will be a sample of the own time series
[yt�1,yt�2, y, yt�23, yt�24] considering a 24 lag, and the
supervised response will be the one-step-ahead observa-
tion [yt].

(b) As a problem of regression, temporal explanatory (dummy)
variables will be used. In this way, the input will be a set of
dummy values (0s and 1s) plus the time series observation
[yt�1, yt�2, y, yt�x, d1, d2, y, dk,], where x represents some
last observations and dk is a binary transformation for the
seasonality or other endogenous variables—e.g., the hour
12 could be transformed into the dummy number 1100.
Procedures of data mining are usually useful to pre-process
the original time series for obtaining special features like
variance, autocovariance, average, etc., as input for the
ANNs. This study assumes the number of inputs in case
(a) as well as in case (b) as the same so we can compare the
methodologies. Due to that, we should know in advance the
most important seasonality to define the lagged variables.
Graphs like Autocorrelation function (ACF) or density
functions (generated by Fast Fourier Transform—FFT) are
available resources in many packages that could help define
the seasonality. As a naı̈ve time series, the ACF and the
density function for the STAR2 model (as first presented in
Fig. 2) shows clearly the seasonality in Fig. 3.
�
 Predict X steps ahead. X represents the number of steps ahead of
the lagged input values that the predicted output lies. In this
case, due to small synthetic time series and considering the
error propagation throughout the steps prediction, just one
step ahead will be used. The output of the network can be
combined with previous input values, shifted one time step,
and repeated predictions made. Since the runtime is mainly
dependent on the minimum error to be reached and this error
is not linear, it is not correct to say that predicting two steps
ahead doubles the runtime of predicting one step ahead. Since
the second prediction aggregate also the error of the first
prediction, the second runtime cost tends to be greater than
the first one. The prediction for X (greater than 1) steps
ahead with the consequent shift of X time steps on the input,
presents two drawbacks: the runtime cost and the MAPE are
increased.

�
 Steps used to predict. The number of ANN’s input are considered

here as 24 and 12 either as a univariate time series mode or as
a regression mode.
(a) For the time series input mode, the level 24 corresponds to

a complete period considering seasonality. The level of 12
corresponds to a composition between the last 8 points of
the series plus 4 correspondents’ statistics of the input
series (average, standard deviation, autocorrelation for lag
1 and autocorrelation for lag 2).

(b) For the regression input mode, the level of 24 corresponds
to a composition of 20 values of the series plus 4 dummy
variables related to the last point. The level of 12
corresponds to a composition between the last 4 points
of the series plus 4 correspondents’ statistics of the input
series (average, standard deviation, autocorrelation for lag
1 and autocorrelation for lag 2) plus 4 dummy variables
related to the last point.
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�
 Phase 1 training algorithm. This factor is related to the training
algorithm for the MLP in a first stage and assumes three levels.
(a) Backpropagation. A simple algorithm with a large number

of tuning parameters, often slow terminal convergence, but
good initial convergence.

(b) Quick propagation. An older algorithm with comparable
performance to Backpropagation in most circumstances,
although it seems to perform noticeably better on some
problems.

(c) Delta-bar-delta. Another variation on Backpropagation,
which occasionally seems to have better performance.
�
 Phase 2 training algorithm. This factor is related to the training
algorithm for the MLP in a second stage and assumes three
levels.
(a) Conjugate gradient descent. A good generic algorithm with

generally fast convergence.
(b) Quasi-Newton. A powerful second-order training algorithm

with very fast convergence but high memory requirements.
(c) Levenberg–Marquardt. An extremely fast algorithm in the

right circumstances (i.e., low-noise regression problems
with the standard sum-squared error function).
�
 Epochs. An epoch is the presentation of the entire training set to
the neural network in a given phase. Increasing this number will
likely improve the accuracy of the model, but at the cost of time,
and decreasing this number will likely decrease the accuracy, but
take less time. Directly related to the time series sample size this
value will be adopted here at the levels of 100 and 400.

�
 Learning rate. A value between 0 and 1 that represents a tuning

variable for the training algorithms of Backpropagation, Quick
propagation and Delta-bar-delta. Lower learning rates require
more training iterations. A higher learning rate allows the network
to converge more rapidly, however the chances of a non-optimal
solution are greater. The levels chosen here were 0.0 and 0.1.

�
 Initialization method. This factor defines how the weights

should be initialized at the beginning of training and assumes
two levels:
(a) Random uniform. The weights are initialized to a uniformly

distributed random value, within a range whose minimum
and maximum values are given. In this case, minimum and
maximum are 0 and 1.

(b) Random Gaussian. The weights are initialized to a normally
distributed random value, within a range whose mean and
standard deviation are given. In this case, N(0,1) was
adopted.
�
 Stopping conditions (Target error). If the error on the training or
selection test drops below the given target values, the network
is considered to have trained sufficiently well, and training is
terminated. The error never drops to zero or below, so the
default value of zero is equivalent to not having a target error.

�
 Minimum improvement in error for training/selection. This factor

represents the minimum improvement (drop) in error that
must be made; if the rate of improvement drops below this
level, training is terminated. The default value of zero implies
that training will be terminated if the error deteriorates. One
can also specify a negative improvement rate, which is
equivalent to giving a maximum rate of deterioration that will
be tolerated. The improvement is measured across a number of
epochs, called the ‘‘window’’ (see below).

�
 Minimum improvement in error for number of epochs. Specifies

the number of epochs across which improvement is measured.
Some algorithms, including Backpropagation, demonstrate
noise on the training and selection errors, and all the
algorithms may show noise in the selection error. It is therefore
not usually a good idea to halt training on the basis of a failure
to achieve the desired improvement in error rate over a single
epoch. The window specifies a number of epochs over which
the error rates are monitored for improvement. Training is only
halted if the error fails to improve for that many epochs. If the
window is zero, the minimum improvement threshold is not
used at all. The variable levels of 1, 25 and 50 define the
window size in determining minimum improvement. The
adopted values were considered taking into account the time
series seasonality.

�
 Prune units with small fan-out weights. A neuron with small

magnitude fan-out weights (i.e., weights leading to the next
level) makes little contribution to the activations of the next
layer and can be pruned, leading to a compact, faster network
with equivalent performance. This option is particularly useful
in conjunction with Weigend weight decay that encourages
the development of small weights precisely so that they can be
pruned. Hidden units with small fan-out weights should be
pruned. If a unit’s fan-out weights have smaller magnitude
than a threshold, it is a candidate for pruning.

�
 Prune input.

(a) y with small fan-out weights. Each input has one or more
associated input layer neurons (more than one for some
nominal inputs, and for time series networks), and the fan
out on all these input neurons must be less than the
threshold for the input to be pruned.

(b) y with low sensitivity after training. A sensitivity analysis is
run after the network is trained, and input with training
and selection sensitivity ratios below a threshold value are
pruned. An input with a sensitivity pruning ratio threshold
of 1.0 makes no contribution to the network’s decision, and
can be pruned without any detriment. An input with
sensitivity below 1.0 actually damages network perfor-
mance, and should definitely be pruned (perhaps surpris-
ingly, inputs with sensitivity below 1.0 on the selection
data are not an uncommon occurrence, a by-product of
over-learning).
�
 Weigend weight decay regularization—Phase 1. Weight decay
can be applied separately to the two phases of a two-phase
algorithm. In the phase 1 the algorithms of Backpropagation,
Quick propagation, Delta-bar-delta were considered. This
option encourages the development of smaller weights, which
tends to reduce the problem of over-fitting, thereby potentially
improving generalization performance of the network, and also
allowing you to prune the network. Weight decay works by
modifying the network’s error function to penalize large
weights—the result is an error function that compromises
between performance and weight size. Consequently, too large
a weight decay term may damage network performance
unacceptably, and experimentation is generally needed to
determine an appropriate weight decay factor for a particular
problem domain. A study of decay factors and weight pruning
shows that the number of inputs and units pruned is
approximately proportional to the logarithm of the decay
factor, and this should be borne in mind when altering the
decay factor. For example, if you use a decay factor of 0.001 and
this has insufficient effect on the weights, you might try 0.01
next, rather than 0.002; conversely, if the weights were over-
adjusted resulting in too much pruning, try 0.0001. There is
also a secondary factor in weight decay, which is usually left at
the default value of 1.0.

�
 Weigend weight decay regularization—Phase 2. In this phase, the

algorithms of Conjugate gradient descent, Quasi-Newton, and
Levenberg–Marquardt were considered.

�
 Backpropagation tuning:

(a) Adjust learning rate and momentum each epoch. Usually
Backpropagation uses a fixed learning rate and momentum
throughout training. Some authors, however, recommend
altering these rates on each epoch (specifically, by reducing
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the learning rate—this is often counter-balanced by
increasing momentum). A higher learning rate may
converge more quickly, but may also exhibit greater
instability. Values of 0.1 or lower are reasonably conserva-
tive—higher rates are tolerable on some problems, but not
on all (especially on regression problems, where a higher
rate may actually cause catastrophic divergence of the
weights). Momentum is used to compensate for slow
convergence if weight adjustments are consistently in one
direction—the adjustment ‘‘picks up speed’’. Momentum
usually increases the speed of convergence of Backpropa-
gation considerably, and a higher rate can allow you to
decrease the learning rate to increase stability without
sacrificing much in the way of convergence speed.

(b) Shuffle presentation order of cases each epoch. In this case,
the Backpropagation algorithm adjusts the weights of the
network as each training case is presented (rather than the
batch approach, which calculates an average adjustment
across all training cases, and applies a single adjustment at
the end of the epoch). If the shuffle option is checked, the
order of presentation is adjusted each epoch. This makes
the algorithm somewhat less prone to stick in local
minima, and partially accounts for Backpropagation’s
greater robustness than the more advanced second-order
training algorithms in this respect.

(c) Add Gaussian noise. Gaussian noise of the given deviation is
added to the target output value on each case. This is
another regularization technique, which can reduce the
tendency of the network to overfit. The best level of noise
is problem dependent, and must be determined by
experimentation. The standard deviation of the Gaussian
noise added to the target output during training in this
case is 0.10.
�
 Quick propagation tuning:
(a) Learning rate. Specify the initial learning rate, applied in the

first epoch; subsequently, the quick propagation algorithm
determines weight changes independently for each weight.

(b) Acceleration. Specify the maximum rate of geometric
increase in the weight change, which is permitted. For
example, an acceleration of two will permit the weight
change to no more than double on each epoch. This
prevents numerical difficulties otherwise caused by non-
concave error surfaces.

(c) Add Gaussian noise. Same as for Backpropagation.

�
 Delta-bar-delta tuning:

(a) Learning rate. Specify the initial learning rate used for all
weights on the first epoch. Subsequently, each weight
develops its own learning rate. Specify the linear incre-
ment added to a weight’s learning rate if the slope remains
in a consistent direction. Specify the geometric decay
factor used to reduce a weight’s learning rate if the slope
changes direction. Specify the smoothing coefficient used
to update the bar-Delta smoothed gradient. It must lie in
the range (0,1). If the smoothing factor is high, the bar-
Delta value is updated only slowly to take into account
changes in gradient. On a noisy error surface this allows
the algorithm to maintain a high learning rate consistent
with the underlying gradient; however, it may also lead to
overshoot of minima, especially on an already-smooth
error surface.

(b) Add Gaussian noise. Same as for Backpropagation.

�
 Sample size. The set of time series will be represented having an

hourly based seasonality corresponding to 1 week (168 points),
2 weeks and 4 weeks (that is approximately a month). This is a
tentative to resemble practical problems. The seed for the
random error was recorded for future benchmarking purposes.
�
 Sampling method:
(a) Random resampling. In the random (Monte Carlo) resam-

pling method the subsets are randomly sampled from the
available cases. Each available case is assigned to one of the
three subsets (training, selection or test) using the
proportion 2:1:1.

(b) Cross-validated resampling. The cross validation is N-fold,
where N is the number of samples taken. The available data
is divided into N parts, and one part is assigned to the test
set on each sample. The remainder is divided among the
training and selection subsets, and you can specify how
many are put in each. Many authors, when using cross
validation, do not use a selection set at all, on the basis that
any bias contributed by a particular network can be
compensated for by averaging predictions across the
networks in an ensemble. However, it is probably still
advisable to take some steps to alleviate over-learning,
which might include use of a selection set, weight decay, or
stopping conditions determined experimentally to be
reasonable for the problem domain.
3.3. Designs and results

In this section, the guidelines related to the choice of
experimental design and its statistical results will be discussed.

Considering the 24 factors in Table 2 it is interesting to
evaluate the complexity of running the entire combinatorial
possibilities while simulating the ANNs. In a case where only two
levels for each factor are considered to run the complete
simulation (varying one factor at a time), the number of runs
would be 224. Taking into account 10 min as a rough time for each
simulation in a fast computer, the time required would be related
to centuries for all the combinations. It is unlikely that trial and
error, the most used method, find the best combination for the
ANN’s training. Fortunately, a great number of designs are
available nowadays to deal with screening procedures.

Some potential designs and strategies are suitable for the first
screening phase where the goals are to identify those factors that
may affect the performance the most, screen out the irrelevant
variables and establish the cause and effect relationships. The
screening method used depends on the number of factors that
need to be screened. Fractional factorial designs are amongst the
most widely used types of design in industry (Myers and
Montgomery [72]). However, those are not practical when the
number of factors exceeds 20 and there are more than two levels.
Other screening methods for large numbers of variables include
(i) Group Screening Design (Kleijnen [73]) with some drawback
related to group formation; (ii) Sequential Bifurcation (Trocine
and Malone [74]), with a drawback of being limited to quantitative
variables; (iii) the Iterated Fractional Designs (Andres and Hajas
[75]) with a drawback of not being able to evaluate interaction,
and (iv) the Trocine Screening Procedure (Trocine [76]) with a
drawback of only being able to evaluate three to four critical
factors. In general, these methods are useful and much better than
the traditional trial and error strategy.

3.3.1. Design 1: Taguchi screening design for 19 factors

In this work, a Taguchi approach was considered as screening
design due to the factor’s structure presented in Table 2, with 11
two-level factors, 8 three-level factors and 3 conditional four-level
factors. Out of 24 factors, 2 of them (ANN architecture and Predict

X steps ahead) were established as a constraint and excluded from
the design due to the following reasons: (i) The ANN architecture
has to be defined a priori so the factors could be the same. Using a
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Table 3
Taguchi crossed array

Inner Array (L36) Outer Array (L4)

11 two-level factors 8 three-level factors y1 y2 y3 y4

BP 1 1 2 2

QP 1 2 1 2

DD 1 2 2 1

HL OF PT SP Ep LR IM SC ET PU SM UL P1 P2 EE PI W1 W2 SS MAPE

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.056 0.066 0.071 0.073

2 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 0.073 0.078 0.073 0.075

3 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 0.084 0.076 0.074 0.085

4 1 1 1 1 1 2 2 2 2 2 2 1 1 1 1 2 2 2 2 0.093 0.100 0.102 0.096

5 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 0.092 0.096 0.091 0.097

6 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 1 1 1 1 0.103 0.095 0.103 0.102

7 1 1 2 2 2 1 1 1 2 2 2 1 1 2 3 1 2 3 3 0.093 0.085 0.095 0.094

8 1 1 2 2 2 1 1 1 2 2 2 2 2 3 1 2 3 1 1 0.088 0.098 0.103 0.101

9 1 1 2 2 2 1 1 1 2 2 2 3 3 1 2 3 1 2 2 0.150 0.147 0.144 0.142

10 1 2 1 2 2 1 2 2 1 1 2 1 1 3 2 1 3 2 3 0.041 0.039 0.046 0.044

11 1 2 1 2 2 1 2 2 1 1 2 2 2 1 3 2 1 3 1 0.090 0.093 0.091 0.097

12 1 2 1 2 2 1 2 2 1 1 2 3 3 2 1 3 2 1 2 0.091 0.093 0.092 0.097

13 1 2 2 1 2 2 1 2 1 2 1 1 2 3 1 3 2 1 3 0.075 0.071 0.063 0.067

14 1 2 2 1 2 2 1 2 1 2 1 2 3 1 2 1 3 2 1 0.131 0.123 0.121 0.123

15 1 2 2 1 2 2 1 2 1 2 1 3 1 2 3 2 1 3 2 0.084 0.093 0.098 0.086

16 1 2 2 2 1 2 2 1 2 1 1 1 2 3 2 1 1 3 2 0.107 0.095 0.097 0.093

17 1 2 2 2 1 2 2 1 2 1 1 2 3 1 3 2 2 1 3 0.132 0.124 0.128 0.129

18 1 2 2 2 1 2 2 1 2 1 1 3 1 2 1 3 3 2 1 0.117 0.105 0.103 0.107

19 2 1 2 2 1 1 2 2 1 2 1 1 2 1 3 3 3 1 2 0.124 0.131 0.137 0.125

20 2 1 2 2 1 1 2 2 1 2 1 2 3 2 1 1 1 2 3 0.114 0.120 0.116 0.115

21 2 1 2 2 1 1 2 2 1 2 1 3 1 3 2 2 2 3 1 0.094 0.099 0.100 0.100

22 2 1 2 1 2 2 2 1 1 1 2 1 2 2 3 3 1 2 1 0.103 0.106 0.112 0.119

23 2 1 2 1 2 2 2 1 1 1 2 2 3 3 1 1 2 3 2 0.108 0.117 0.116 0.117

24 2 1 2 1 2 2 2 1 1 1 2 3 1 1 2 2 3 1 3 0.115 0.107 0.105 0.110

25 2 1 1 2 2 2 1 2 2 1 1 1 3 2 1 2 3 3 1 0.109 0.117 0.113 0.111

26 2 1 1 2 2 2 1 2 2 1 1 2 1 3 2 3 1 1 2 0.063 0.065 0.066 0.062

27 2 1 1 2 2 2 1 2 2 1 1 3 2 1 3 1 2 2 3 0.111 0.111 0.115 0.115

28 2 2 2 1 1 1 1 2 2 1 2 1 3 2 2 2 1 1 3 0.102 0.111 0.113 0.118

29 2 2 2 1 1 1 1 2 2 1 2 2 1 3 3 3 2 2 1 0.088 0.081 0.091 0.078

30 2 2 2 1 1 1 1 2 2 1 2 3 2 1 1 1 3 3 2 0.149 0.136 0.135 0.129

31 2 2 1 2 1 2 1 1 1 2 2 1 3 3 3 2 3 2 2 0.096 0.103 0.104 0.105

32 2 2 1 2 1 2 1 1 1 2 2 2 1 1 1 3 1 3 3 0.087 0.088 0.076 0.085

33 2 2 1 2 1 2 1 1 1 2 2 3 2 2 2 1 2 1 1 0.098 0.099 0.105 0.099

34 2 2 1 1 2 1 2 1 2 2 1 1 3 1 2 3 2 3 1 0.099 0.107 0.107 0.090

35 2 2 1 1 2 1 2 1 2 2 1 2 1 2 3 1 3 1 2 0.063 0.056 0.062 0.067

36 2 2 1 1 2 1 2 1 2 2 1 3 2 3 1 2 1 2 3 0.067 0.070 0.055 0.064
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different ANN would imply in different factors and levels that
does not make sense in this case. For instance, only MLP was here
evaluated. (ii) The prediction horizon was defined for a single step
ahead, which simplifies dramatically the comparison results. Just
increasing this interval does not add any major contribution to the
ANN optimization and to the research objective.

The Taguchi design with its structure of inner/outer array
allows a good fitting for the factors in Table 2 as presented in
Table 3. In this screening phase, the two and three-level factors
are used as inner array in a L36 Taguchi design. The conditional
factors (BP, QP and DD) are related to the tuning of the factor P1
(Phase 1 training algorithm) for the MLP and will be used here as
outer array structure. This means that when a level (Back-

propagation, Quick Propagation or Delta-bar-Delta) for the factor
P1 is chosen, a specific tuning will be used for each level. A L4

Taguchi design for the tuning y1yy4 was then chosen. This design
is based on the levels (A, B and C of the tuning parameters of the
factors BP, QP and DD according to Table 2. The response variable is
the metric MAPE and the outer array structure is conditional
to the above-mentioned level of the factor P1. When P1 assume,
for example, level 1 (that means Backpropagation) the tuning will
setup A (Adjust learning rate and momentum each epoch), B (Shuffle

presentation order of cases each epoch) and C (Add Gaussian noise)
as Yes (1) or No (2) according to the L4 Taguchi design. Each run of
L36 will be repeated 4 times through y1 to y4. The idea here was to
use a design with minimal number of runs. In this case the L4

Taguchi design (with 4 runs) is similar to a 23�1 classical design
(with also 4 runs). Both designs can be considered as of resolution
III, were the alias structure is similar. For a high order design,
like the full factorial design, the number of runs would be
doubled (and so the number of simulations). In this case, in spite
of the gain of resolution of a higher order design, the runtime cost is
decisive. Since the L4 Taguchi design is used only on the screening
phase, and only for conditional factors, the confounding effects
(due to the DOE resolution) could be solved in the next designs.
The following experimental design was obtained and the MAPE,
considering 24 or 12 points out of training sample, was then
calculated.

Taguchi recommends that the mean response for each run in
the inner array and also the signal-to-noise ratio (SN) need to be
evaluated. The SN here can be computed using the following
standard smaller-the-better function:

SN ¼ �10 log
1

n

Xn

i¼1

y2
i

 !
with n ¼ 4.

The SN is expressed on a decibel scale and at this screening
level, the Taguchi strategy of analysis is just to pick the winner. The
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best level values for computed SNs are always the greatest. Values
for the mean depend on the problem type and here MAPE is
desirable as smaller as possible. Taguchi advocates claim that the
use of SN ratio generally eliminates the need for examining
specific interactions between the inner array and the outer array
factors. By observing both the mean and the SN ratio, as shown in
Fig. 4, it is easy to pick the factors level that result at the same
time in smaller values of mean and greater values of SNs.
Borderline values will be left for future designs where interactions
could be better evaluated.

From this screening analysis, some results were established,
considering the MAPE mean and the SN ratio:
(a)
 The factors IM, SC, PU, EE and PI were considered not
significant and further designs could either eliminate or
define them as a noise factors. These are the factors which
effects were constant for the factor’s level.
(b)
 The factors PT, P1 and P2 were considered significant and their
levels were established for future designs. These are the
factors which effects have resulted in both greater SN and
smaller mean, that means P1 (level 1 ¼ Backpropagation), P2
(level 3 ¼ Levenberg– Marquardt) and PT (level 1 ¼ Univariate

time series).

(c)
 The factors HL, SM, UL, W1, W2, SS, OF, SP, Ep, LR and ET were

considered borderlines because it was not so clear to
eliminate or to select the factor’s level. Here, further
investigation is needed.
(d)
 Due to clear similarities in terms of SN as well as in terms of
mean, the three-level borderline factors (UL, W1, W2 and SS)
were then defined as two-level factors.
21

22

21

20

21 21 21 21

21

22

21

20

21 21 21 21

21

22

21

20

321 321 321

321

22

21

20

321 321 321

HL

M
ea

n 
of

 S
N

 ra
tio

s

OF PT SP Ep

LR IM SC ET PU

SM UL P1 P2 EE

PI W1 W2 SS

Main Effects Plot for SN ratios

Signal-to-noise: Smaller is better

1.0 1.5 4.0

Fig. 4. Mean and SN for the Tag
(e)
M
ea

n 
of

 M
ea

ns

uchi
For the noise variables, statistical t-tests have not rejected the
null hypothesis of equal means. In this way the authors were
quite comfortable in neglecting the noise variables in further
designs.
(f)
 One interesting finding is related to the number of inputs
pruned and the input mode. For the 24 points for a problem of
univariate time series, the number of inputs pruned is small
for most cases (the average was 3). This means that all the
points are important to establish the prediction. As a problem
of regression, were pre-processing was imposed to the time
series input, the pruned number was statistically greater than
for the univariate time series mode (the average number
was 7). This means that some pre-processing techniques have
not added any contribution for the neural network efficiency.
3.3.2. Design 2: 21127
III fractional factorial design for 11 factors

For the 11 two-level remaining factors a resolution III
Plackett–Burman fractional factorial design or a L12 Taguchi
design could be used with potentially same results and using
the minimum amount of 12 runs. Some close options could be the
L16 Taguchi design or the resolution III Fractional Factorial
21127

III design, both with 16 runs. Using both Plackett–Burman
and Taguchi designs, the interaction analysis is often difficult to
interpret in practice. If the choice is between a geometric 21127

III

design with 16 runs or a 12-run Plackett–Burman design that may
have to be folded over (thereby requiring 24 runs) the geometric
design may turn out to be a better choice (Montgomery, 1993).
The geometric fractional factorial 21127

III design (in coded units)
was then used here and the experimental results are shown in
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Table 4. MAPE 1, MAPE 2 and MAPE 3 consider the noise variables
at their lowest, middle and upper levels, respectively.

Fig. 5 presents the Pareto chart and the main effects plot for
the factors in Table 4.

For this second screening analysis, the results were:
(a)
Tabl
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The factors ET and W1 were considered not significant and
further designs could either eliminate or define them as a
noise factor. These are factors which effects were constant for
the factor’s level.
ET

HL.SM

HL.LR

W1

HL.Ep

HL.UL

OF

SS

UL

Ep

HL

SM

W2

SP

LR

0.040.030.020.010.00

Te
rm

Effect

0.03279

Pareto Chart of the Effects
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Fig. 5. 211�7
III Design

e 4
7 Design

HL SM UL W1 W2 SS OF SP
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�1 1 �1 �1 1 1 �1 1
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The factor LR was considered significant and its level could be
established for future designs. This is a factor which effect has
resulted in smaller error mean.
(c)
 The factors HL, SM, UL, W2, SS, OF, SP, and Ep were con-
sidered borderlines because it was not so clear to eliminate or
to select the factor’s level. Here, further investigation is
needed.
(d)
 For the noise variables, statistical t-tests have not rejected the
null hypothesis of equal means. As in design 1 the authors
were quite comfortable in neglecting the tuning variables in
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LR ET MAPE 1 MAPE 2 MAPE 3 Mean

1 1 0.060 0.073 0.068 0.067

�1 �1 0.060 0.054 0.054 0.056

�1 1 0.012 0.004 0.003 0.006

1 �1 0.099 0.097 0.092 0.096

1 �1 0.072 0.074 0.074 0.074

�1 1 0.109 0.093 0.096 0.099

�1 �1 0.110 0.099 0.093 0.101

1 1 0.056 0.055 0.053 0.055

1 1 0.105 0.113 0.106 0.108

�1 �1 0.041 0.038 0.046 0.042

�1 1 0.027 0.025 0.024 0.025

1 �1 0.105 0.112 0.114 0.110

1 �1 0.083 0.080 0.080 0.081

�1 1 0.118 0.118 0.121 0.119

�1 �1 0.080 0.097 0.087 0.088

1 1 0.093 0.095 0.105 0.098
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further designs. This mean that the setup obtained on
previous setup, using Taguchi design, was coherent.
3.3.3. Design 3: 2824
IV fractional factorial design for 8 factors

For the 8 two-level remaining factors a resolution L12 Taguchi
design is the choice with minimum number of runs. Some close
options could be the L16 Taguchi design or the resolution IV
Fractional Factorial 2824

IV design, both with16 runs. Due to interac-
tion analysis, the choice of 2824

IV is natural, considering the same
criteria mentioned on previous design.

A resolution IV fractional factorial design has the main effects
clear of two-factor interactions. Some two-factor interactions are
aliased with each other. Resolution IV designs that contain exactly
2k runs are called minimal designs, as is in this case where k ¼ 8.

The minimal design 2824
IV results are shown in Table 5.

The design generators structure for this 2824
IV minimal design is

represented by

A ¼ BCD; F ¼ ACD; G ¼ ABC; H ¼ ABD:

This means that a main factor (A, F, G and H) is confounded with
three-factor interactions (BCD, ACD, ABC and ABD, respectively)
e 5
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that are usually of small effects. When analyzing the main effects,
the greater the resolution the better.

Fig. 6 presents the main effects plot for the factors in Table 5.
Some two-way interactions are also shown.

Similarly to design 2, this third design results were:
(a)
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(STAR
The factor W2 was considered not significant. Its effect was
constant for the factor’s level.
(b)
 The factors SM, OF and Ep were considered significant and its
levels could be established.
(c)
 The factors HL, UL, SS and SP were considered borderlines.
Two-factor interactions were greater than some main factors
but not statistically significant.
(d)
 For the noise variables, statistical t-tests have not rejected the
null hypothesis of equal means.
3.3.4. Design 4: 24 full factorial design for 4 factors

For the 4 two-level remaining factors a full factorial design
with 16 runs was chosen as shown in Table 6. The experimental
results are shown in Fig. 7.
Ep MAPE 1 MAPE 2 MAPE 3 Mean

�1 0.045 0.058 0.053 0.052

1 0.123 0.116 0.117 0.119

1 0.047 0.039 0.038 0.041
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For this full factorial design, the results were:
(a)
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The factors HL, UL, SS and SP were considered significant and
its levels could be established.
(b)
 A second-order interaction between HL and UL was consid-
ered significant.
(c)
 For the noise variables, statistical t-tests have not rejected the
null hypothesis of equal means.
e 6
factorial design
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3.4. Confirmation tests

Table 7 presents the simulation results for the eight nonlinear
time series. The designs used on each nonlinear model are also
mentioned. They were obtained according to similar procedure as
shown in previous section. The final ANN’s MAPE and the model’s
MAPE were also computed.

The main findings on these experimental results are following
summarized.
�

M
e
a
n

TAR
The factors HL, SM, UL, SS, OF, P1, P2, PT were considered
significant for the eight nonlinear time series. The features in
each nonlinear model were irrelevant determining the ANN
parameters.

�
 For most time series the Sampling method (SM) interacts

significantly with Number of units per layer (UL). This is
theoretically expected since complex Neural Networks (like
with four layers, e.g.) requires more samples for training. The
same expectation happens with the HL and UL. For interaction
between UL and HL the main factors act in the way to decrease
the MAPE and the interaction acts on the opposite way.
Fig. 8 shows the ANN forecasting results for the SETAR2 model
using the optimized parameters as presented in Table 6. The ANN
presents a good fitting when compared to the specific nonlinear
model.
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Table 7
ANN parameters chosen for the nonlinear time series

Factor Nonlinear model

SAR BL1 BL2 TAR NAR NMA STAR1 STAR2

HL 2�� 2� 2� 2� 2� 2� 2�� 2��

SM Random� Random�� Random� Random� Random� Random� Random�� Random��

UL 2(N+1)�� 2(N+1)� 2(N+1)� 2(N+1)�� 2(N+1)� 2(N+1)� 2(N+1)�� 2(N+1)��

W1 0.0001 0.0001 0.0001 0.001 0.001 No 0.001 0.001

W2 0.0001 No No 0.001 0.0001 No 0.001 0.001

SS 21�24� 21�24� 21�24� 21�24� 21�24� 21�24� 21�24�� 21�24��

OF Logistic� Logistic� Logistic� Logistic� Logistic� Logistic� Logistic� Logistic�

SP 24 12� 12 12� 24 12� 24 12�

Ep 400 400 400� 100 100 400 400� 400�

LR 0.9� 0.9 0.9 0.9� 0.9� 0.1 0.9� 0.9�

ET 0 �0.1 �0.1 0 0 �0.1 0 0

P1 BP� BP� BP� BP� BP� BP� BP� BP�

P2 Lev. Mar.� Lev. Mar.�� Lev. Mar.�� Lev. Mar.� Lev. Mar.� Lev. Mar.� Lev. Mar.� Lev. Mar.��

PT Univ.�� Univ.�� Univ.�� Univ.�� Univ.�� Univ.�� Univ.�� Univ.��

PU Sensitivity No Fan-out Fan-out Sensitivity No No Fan-out

EE 25 1 1 50 25 50 25 25

PI No No Fan-out Fan-out Sensitivity Sensitivity Fan-out Fan-out

IM U(0,1) U(0,1) U(0,1) N(0,1) N(0,1) U(0,1) N(0,1) N(0,1)

SC 0 0.1 0.1 0 0.1 0 0 0

BP Factors On Factors On Factors On Factors On Factors On Factors On Factors On Factors On

QP Factors On Factors On Factors On Factors On Factors On Factors On Factors On Factors On

DD Factors On Factors On Factors On Factors On Factors On Factors On Factors On Factors On

Main interactions HL.UL HL.UL HL.UL SM.UL HL.UL HL.UL HL.UL HL.UL

SM.UL OF.P2 SM.UL OF.P2 P2.PT SM.UL

SM.UL SM.UL

Tag L36 L4 Tag L36 L4 Tag L36 L4 Tag L36 L4 Tag L36 L4 Tag L36 L4 Tag L36 L4 Tag L36 L4

Factorial designs 211�7
III 210�6

III 210�6
III 29�5

III 211�7
III 211�7

III 212�8
III 211�7

III

27�3
IV 26�2

IV 27�3
IV 26�2

IV 28�4
IV 27�3

IV 28�4
IV 28�4

IV

23 23 24 23 24 23
25�1

V
24

MAPE (ANN) 0.0435 0.0292 0.0194 0.0248 0.0366 0.0468 0.0246 0.0282

MAPE (Model) 0.0623 0.061 0.0656 0.0781 0.0664 0.0789 0.075 0.0788

� P-valueo0.05.
�� P-valueo0.001.
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Fig. 8. ANN forecasting for the SETAR2 model using the optimized parameters. The

data test is amplified.
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4. Case study: short-term electricity load

Companies that trade in deregulated electricity markets in the
US, Brazil, England, and most other countries use time series
forecasting to predict demand of electricity as part of the
information necessary to set buying and selling contracts. If they
are production or trade companies, their interests lie particularly
in optimizing the energy load and prices sold to their costumers.

This case study deals with the modeling and forecasting of an
important variable that affects achieving a good portfolio of
electricity contracts: the electricity load (or consumption).
Knowledge of its future value and its variation is essential to
calculate the portfolio risk and return. Although it is possible to
contract a certain amount of energy with no allowed variation, for
a consumer it represents high risk. In the industrial process there
are a lot of unpredictable factors that can cause an increase or
decrease in energy consumption. If an electricity producer can
accept and manage this risk, the producer will have more
opportunities in the market. Thus, it is important to manage
these risks.

As considered by Angelus [2] and Mount [41], forecasting
electricity prices and loads is an arduous task due to a great
number of factors such as electricity demand and supply, number
of generations, transmission and distribution constraints, etc. For
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Fig. 9. Hourly-based time series (in Watts) of six industrial consumers.
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deregulated electricity markets, a great volume of electricity is
bought and sold in the spot market as well as in the bilateral
market among agents at different geographical regions. A simple
unpredictable climate change can add volatility in demand and
therefore volatility in prices. Pai and Hong [44] also state that
electricity load forecasting is complex to conduct due to
nonlinearity of its influenced factors. They state that the most
important factor in regional or national power system strategy
management has been accurate load forecasting of future
demand.

This case study intends to use the DOE/ANN framework to
forecast electricity load of six industrial consumers in Brazil using
historical hourly time series.

Fig. 9 represents the time series pattern of the hourly
electricity load for each of the six industrial consumers.
Procedures to improve data collection were here enforced to treat
missing data, outliers, typos, seasonality and errors. Week
seasonality was observed in all time series (of lag 168). The
available data set comprises 3 years of hourly electricity load of
Duke Energy, a production company that operates in Brazil.

One problem that comes up when dealing with multiple time
series is usually related to the way the forecasting method is
handled. In this regard it is worth mentioning that for this entire
set of electricity load the behavior of the six time series cannot be
considered as a multivariate process. The correlation between
variables was not significant in any pair of the six time series.
Also, some factors such as missing data, different number of
samples and different intervals, made this kind of approach less
likely to occur. In this way, each series needs to be independently
modeled. Some time series that come from industrial customers
with the same activity could be explained by the same variables,
but this fact was not considered in this paper. Only one multi-
variate specific method with the same parameters is not usually
able to fit the whole set of time series.

Table 8 presents the main results for the ANN’s training and
electricity load forecasting for the six time series considered.
Some nonlinear models were also estimated for comparative
purposes and the MAPE error was obtained considering T ¼ 24 h
(1-day ahead) as interval of prediction. MAPE results are
statistically significant when compared to the nonlinear models
adopted for each time series. It is correct to assume that the ANNs
were quite competent on predicting the short-term electricity
load for the industrial consumers.
5. Conclusions and further research

Motivated by the lack of evidence that an ANN can be easily
parameterized, this study applied the methodology of DOE to
optimize the ANN’s training for problems of nonlinear time series.
The paper describes an approach based on factorial DOE using
screening, Taguchi, fractional and full factorial designs to set the
parameters of a feedforward multilayer perceptron neural net-
work. The approach uses classical factorial designs to sequentially
define the main ANN parameters that a minimum prediction error
could be reached.

The main factors and interactions were identified using this
approach and results suggest that ANNs using DOE can perform
better comparably to the existent nonlinear autoregressive
models.

Eight synthetic nonlinear time series were estimated using
ANN and results have shown that the ANNs were able to
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Table 8
ANN parameters for the six industrial electricity load consumer

Factor Electricity load

Cenu Food-Town Oxicap Delphi Johnson Globo

HL 2� 2�� 2� 2�� 2�� 2��

SM Random�� Random�� Random� Random� Random� Random��

UL 50�� 50� 50� 50�� 50� 50�

W1 No 0.001 0.001 No 0.001 0.001

W2 No 0.001 0.01 No 0.0001 0.01

SS 21�24�� 21�24� 21�24�� 21�24� 21�24� 21�24��

OF Logistic�� Logistic�� Logistic�� Logistic� Logistic� Logistic��

SP 48 24� 24 48� 24 24�

Ep 500 500 400� 400 500 400

LR 0.9� 0.9 0.9 0.9� 0.9� 0.9

ET �0.1 �0.1 0 0 0 0

P1 BP�� BP� BP� BP�� BP� BP��

P2 Lev. Mar.� Lev. Mar.�� Lev. Mar.�� Lev. Mar.� Lev. Mar.� Lev. Mar.�

PT Univ.� Univ.� Univ.�� Univ.�� Univ.�� Univ.�

PU Fan-out Fan-out Fan-out Sensitivity Fan-out Fan-out

EE 1 25 25 25 50 25

PI Fan-out Sensitivity Fan-out Sensitivity Fan-out Fan-out

IM N(0,1) U(0,1) N(0,1) N(0,1) N(0,1) U(0,1)

SC 0.1 0.1 0.1 0.1 0 0

BP Factors On Factors On Factors On Factors On Factors On Factors On

QP Factors On Factors On Factors On Factors On Factors On Factors On

DD Factors On Factors On Factors On Factors On Factors On Factors On

Main interactions HL.UL SM.UL HL.UL HL.UL HL.UL HL.UL

P2.PT OF.P2 SM.UL OF.P2 OF.P2

SM.UL SM.UL SM.UL

Tag L36 L4 Tag L36 L4 Tag L36 L4 Tag L36 L4 Tag L36 L4 Tag L36 L4

Factorial designs 210�6
III 211�7

III 29�5
III 210�6

III 210�6
III 211�7

III

27�3
IV 28�4

IV 26�2
IV 27�3

IV 26�2
IV 27�3

IV

24 24 23 24 23 23

MAPE (ANN) 0.102 0.053 0.113 0.095 0.872 0.105

MAPE (Model) 0.186 (STAR) 0.101 (BILINEAR)) 0.173 (BILINEAR) 0.163 (STAR) 0.107 (NAR) 0.173 (BILINEAR)

� P-valueo0.05.
�� P-valueo0.001.
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generalize realistic autoregressive models better than the specific
model proposed. This general nonlinear property makes ANNs a
promising alternative when forecasting these models. Six indus-
trial electricity load time series were explored as a case study and
results have confirmed the proposed DOE/ANN framework.

As a further research, the following points need to be better
addressed:
�
 The evolutionary approach (e.g., genetic algorithm) have been
referred as an exception in terms of training an ANN, in which
such evolution levels as connection weights, network struc-
ture, learning rules, etc., are optimized using an evolutionary
algorithm. However, studies on the evolutionary approach are
usually concerned with a certain level of evolution, and
research into the simultaneous evolution of various levels is
still in its early stage [59].

�
 Several different methods have been proposed for building the

optimal architecture of an ANN and consider topological
factors such as the number of inputs, the number of hidden
layers and the number of neurons. The pruning algorithm [47],
the polynomial time algorithm [48], the canonical decomposi-
tion technique [58], and the network information criterion [42]
are among these methods. None of them, however, can
guarantee the best ANN solution for the nonlinear time series
forecasting problem. One interesting research is to consider
these methods also as variable in the present DOE framework.
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